

Combating User Fatigue in iGAs: Partial Ordering, Support Vector Machines, and Synthetic Fitness

Xavier Llorà, Kumara Sastry, David E. Goldberg, Abhimanyu Gupta, and Lalitha Lakshmi

Illinois Genetic Algorithms Lab University of Illinois at Urbana-Champaign

{xllora,kumara,deg,agupta21}@illigal.ge.uiuc.edu

Human and Social Aspects of GAs

Selection agent

(Kosorukoff & Goldberg, 2002)

- Interactive Genetic Algorithms
 - No quantitative fitness is available
 - Qualitative fitness is provided by the user
 - Sorting of several solutions
 - Choosing one of solution out of a subset
 - ...
 - User fatigue (short time periods 1-2 hours)
 - Frustration (repeated evaluation of similar solutions)
 - Big time scale between user evaluations and the evolutionary mechanisms
- Efficiency enhancement for iGAs

Facets of an Interactive Genetic Algorithm

- ✗ Users need a clear idea of the outcome
 - Need for a clear criteria of the goal to reach
- ✗ A good visualization goes a long way
 - A non-intuitive visualization may mislead user's evaluations
- Lack of numerical fitness can be a problem
 - No numeric form that can be optimize is available
- User fatigue needs to be minimized
 - User may only be able to provide reliable evaluations for short time periods (1-2 hours)
- **X** Users tend to change their criteria along the way
 - Easy to maintain an unique criteria for short time periods

Lack of a Real Fitness

- A minimal iGA scenario
 - Two solutions are presented for user evaluation
 - Three possible evaluation outcomes:
 - 1. The first is better than the second
 - 2. The second is better than the first
 - 3. Don't know, don't care
 - Evaluation by comparison
- The GA equivalent
 - Tournament selection s=2
- Can we compute a numerical fitness out of partial user evaluations?

Properties of a Synthetic Fitness

- Solution-quality order should be maintained
 - Any synthetic fitness needs to maintain the solution ordering provided by the user

If
$$s_1 \ge s_2 \ge \dots \ge s_n$$
 then $f_s(s_1) \ge f_s(s_2) \ge \dots \ge f_s(s_n)$

- Synthetic fitness should allow extrapolation
 - Any synthetic fitness needs to be able to generalize the ordering relation beyond the available evaluations collected

Nearest Neighbor

Fitness Extrapolation (I/II)

- Given a $f_s: X \to Y$
 - X: problem attributes
 - Y: numeric value
- Set of evaluated solutions
- New solution
 - Compute the k-nearest neighbor
 - Assign the fitness of the weighted fitness of the knearest neighbors
- No extrapolation beyond the current limits

Fitness Extrapolation (II/II)

- Regression model
- Extrapolates beyond the evaluated solutions
- Provides a direction toward improvements
- How many solutions we need to have a reliable model?

Support Vector Regression

- y = a * x + b
- *a*>1 guaranties the order
- Tournament only cares about the partial order among solutions!
- Low cost, high error models

Order Maintenance

Accuracy of Fitness Extrapolation Using $\epsilon\text{-SVM}$

Problem size = 4,7,10,13

Yes, but...

- If we have a numerical fitness:
 - We can build a regression model
 - We can use such model for combating fitness fatigue
- What is it available?
 - Partial ordering of solutions
 - Incremental refinement (new evaluations)
- The idea:
 - Use dominance measures on the graph of partially-ordered solutions
 - Build a map between the problem variables and a numeric ranking (Synthetic fitness)

- Given a set of solutions
 - They can be presented as a sequence of hierarchical tournaments
 - Obtain the partial ordering of the solutions
 - Such ordering can be expressed in a graph form

- Nodes are solutions
- Edges represent the evaluation provided by the user
 - 1. The first is better than the second
 - 2. The second is better than the first
 - 3. Don't know, don't care
- Transformed to contain only 1 and 2 relations
- Property: cycles detect user contradictions in evaluations

Dominance measure

The Numeric Fitness

Synthetic Fitness

- 1. Collect the user evaluations
- 2. Build the partial order graph
- 3. Compute the numeric fitness using the partial order graph
- 4. Use ϵ -SVM for creating a regression model
- 5. Use the learned regression as the synthetic fitness

- Cut down the number of human evaluations
- Exploit synthetic fitness
 - Optimize it
 - Sample the best candidates
 - Show the best solutions to the user
- The sample best solutions help combating
 - Fatigue (educated guess of user preference)
 - Frustration (produce new eureka solutions)

The Big Picture

A Real Experiment

- Considerations in the design process
 - Clear goal definition
 - Impact of problem visualization
 - Persistence of user criteria
- Focus
 - Lack of numeric fitness
 - User fatigue
- A simple controlled task
 - One Max

DISCUS & iGAs

Setting The Pieces

- The system
 - A simple web application
 - OneMax task
 - No linkage learning needed
 - ε-SVM and a linear kernel
 - The compact genetic algorithm (Harik, Cantú-Paz, Goldberg, & Miller, 1999)
- Set up
 - One user with no relation to the research
 - Repeated series of 10 independent runs for different problem sizes {4, 8, 12, 16, 20, 24, 28, and 32 variables}
 - Collect the data to compare it to a simple GA

DISCUS, IGA, & Research

GECCO 2005

(c) Function Evaluations

Conclusions

- Address the lack of numerical fitness and fatigue
- Synthetic fitness model of user preferences
- Optimize such model to take the advantage of the timescale difference
- Sample new solutions out of the optimized model
- Inject these solutions in the evaluation process
- Remarkable speedups
- Real-work applications:
 - Emotional text-to-speech synthesis (two research groups)
 - Marketing campaign and product design (advertisement company)
 - Tuning of text mining analysis tools (chance discovery consortium)

Thank you

• DISCUS project web page

http://www.i-discus.org

• IlliGAL web site

http://www-illigal.ge.uiuc.edu

• IlliGAL blog

http://illigal.blogspot.com