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Human and Social Aspects of GAs
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e Interactive Genetic Algorithms

No quantitative fitness is available

Qualitative fitness is provided by the user

» Sorting of several solutions

» Choosing one of solution out of a subset

User fatigue (short time periods 1-2 hours)

Frustration (repeated evaluation of similar solutions)

Motivation

Big time scale between user evaluations and the evolutionary

mechanisms

« Efficiency enhancement for iGAs
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i Facets of an Interactive Genetic Algorithm

% Users need a clear idea of the outcome

= Need for a clear criteria of the goal to reach

% A good visualization goes a long way

= A non-intuitive visualization may mislead user’s evaluations

# Lack of numerical fithess can be a problem

= No numeric form that can be optimize is available

¢ User fatigue needs to be minimized

= User may only be able to provide reliable evaluations for short
time periods (1-2 hours)

% Users tend to change their criteria along the way

= Easy to maintain an unique criteria for short time periods
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i Lack of a Real Fitness

A minimal iGA scenario
= Two solutions are presented for user evaluation

= Three possible evaluation outcomes:
1. The first is better than the second
2. The second is better than the first

3. Don’t know, don’t care

« Evaluation by comparison

*  The GA equivalent

« Tournament selection s=2

- Can we compute a numerical fitness out of partial user
evaluations?

GECCO 2005 Llora, Sastry, Goldberg, Gupta, & Lakshmi 5



i Properties of a Synthetic Fitness

e Solution-quality order should be maintained

= Any synthetic fitness needs to maintain the solution ordering
provided by the user

If s,z s, = ... = 5, then f(s,) = f(S,) = ... = f(S,)

e Synthetic fitness should allow extrapolation

= Any synthetic fitness needs to be able to generalize the
ordering relation beyond the available evaluations collected
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Fithess Extrapolation (/1)

Givenaf: X —=Y
= X: problem attributes

= Y: numeric value
Set of evaluated solutions

New solution

= Compute the k-nearest neighbor

= Assign the fitness of the
weighted fitness of the k-
nearest neighbors
No extrapolation beyond the
current limits
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Support Vector Regression
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i Order Maintenance

e y=a*x+b
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Accuracy of Fitness Extrapolation Using £-SVM
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Yes, but...

If we have a numerical fitness:
= We can build a regression model

= We can use such model for combating fitness fatigue

What is it available?
= Partial ordering of solutions

= Incremental refinement (new evaluations)

The idea:

= Use dominance measures on the graph of partially-ordered solutions

= Build a map between the problem variables and a numeric ranking
(Synthetic fitness)
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- Hierarchical Evaluation Order

) 2 ) J R J R

010111010100 (010101 100001 100000 101010 (001000 001110

 @Given a set of solutions

= They can be presented as a sequence of hierarchical
tournaments

= QObtain the partial ordering of the solutions

= Such ordering can be expressed in a graph form
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Partial Order Graph
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Edges represent the evaluation provided by the user

1. The first is better than the second
2. The second is better than the first

3. Don’t know, don’t care

Transformed to contain only 1 and 2 relations
Property: cycles detect user contradictions in evaluations
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The Numeric Fitness

e Dominance measure
Dominates  Dominated by Difference
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Synthetic Fitness

. Collect the user evaluations
. Build the partial order graph

. Compute the numeric fitness using the partial order

graph

. Use ¢-SVM for creating a regression model

. Use the learned regression as the synthetic fitness
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s Fatigue

o

e Cut down the number of human evaluations

e Exploit synthetic fitness
= Optimize it
= Sample the best candidates

= Show the best solutions to the user
e The sample best solutions help combating

= Fatigue (educated guess of user preference)

= Frustration (produce new eureka solutions)
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The Big Picture
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i A Real Experiment

e Considerations in the design process
= (Clear goal definition
= |mpact of problem visualization

= Persistence of user criteria

* Focus
= Lack of numeric fitness

= User fatigue

* A simple controlled task

= One Max
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DISCUS & 1GAs
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i Setting The Pieces

e The system
= A simple web application
OneMax task

No linkage learning needed

e-SVM and a linear kernel

The compact genetic algorithm (Harik, Cantd-Paz, Goldberg, & Miller,
1999)

e Setup
= One user with no relation to the research

= Repeated series of 10 independent runs for different problem
sizes {4, 8, 12, 16, 20, 24, 28, and 32 variables}

= Collect the data to compare it to a simple GA
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DISCUS, IGA, & Research
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i Conclusions

Bl
e Address the lack of numerical fitness and fatigue

e Synthetic fitness model of user preferences

e Optimize such model to take the advantage of the
timescale difference

e Sample new solutions out of the optimized model
e Inject these solutions in the evaluation process
 Remarkable speedups

* Real-work applications:

= Emotional text-to-speech synthesis (two research groups)
= Marketing campaign and product design (advertisement company)

= Tuning of text mining analysis tools (chance discovery consortium)
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* DISCUS project web page
http://www.i-discus.org

* JILiIGAL web site
http://www-illigal.ge.uiuc.edu

* |lliGAL blog
http://illigal.blogspot.com
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Thank you
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